Numerical Simulation and Experimental Validation of Residual Stresses in Water-Quenched Aluminum Alloy Castings
نویسندگان
چکیده
Aluminum alloy castings are normally water quenched after solution treatment to improve mechanical properties. Rapid water quenching can result in high-residual stress and severe distortion which significantly affect functionality and performance of the products. To optimize product design and durability, one needs to model and predict residual stress and distortion produced in the water-quenched components. In this article, a finite element-based approach was developed to simulate the transient heat transfer and residual stress development during water quenching. In this approach, an iterative zone-based heat transfer algorithm was coupled with material constitutive model called mechanical threshold stress (MTS). With the integrated models, a good agreement was achieved between the numerically predicted and the experimentally measured residual stresses in the aluminum alloy frame-shape casting. The integrated FEA-based heat transfer and residual stress models were also applied to a water-quenched cast aluminum cylinder head with a great success.
منابع مشابه
Experimental and Numerical Investigation of Warm Deep Drawing Process of AA5052 Aluminum Alloy
Aluminum alloys have a high strength-to-weight ratio and proper anti-corrosion properties that are used in the automotive, shipbuilding and aerospace industries. The major problem with forming aluminum sheets is the low formability of aluminum sheets at room temperature. Therefore, in the present study, warm deep drawing (WDD) of AA5052-O aluminum alloy sheets with a thickness of 1mm was invest...
متن کاملThe Effects of Forming Parameters on the Single Point Incremental Forming of 1050 Aluminum Alloy Sheet
The single point incremental forming (SPIF) is one of the dieless forming processes which is widely used in the sheet metal forming. The correct selection of the SPIF parameters influences the formability and quality of the product. In the present study, the Gurson-Tvergaard Needleman (GTN) damage model was used for the fracture prediction in the numerical simulation of the SPIF process of alum...
متن کاملResidual Stresses Measurement of a Quenched Cylinder using Slitting Method
Residual Stress measurement has gained interests among researchers for many years due to its great influence on the structural integrity. Slitting method is one of the destructive techniques that relies on the introduction of an increasing cut to a part containing residual stresses. Similar to all other mechanical strain relief techniques, slitting also suffers from its shortcomings during the ...
متن کاملExperimental and Numerical Investigation on the Heat Treatment Effects of AA6063 Aluminum Alloy Tubes During Rotary Draw Bending
In this study, the effects of heat treatment of aluminum alloy on the tube bending process were investigated in the rotary draw bending process. As two experimental and numerical simulation methods were used to determine the wall-thinning, ovality, and spring back for extruded, annealed, and aged AA6063 aluminum alloy tubes in different bending angles and bend radii. Numerical simulations were ...
متن کاملResidual Stresses Measurement in Hollow Samples Using Contour Method
Residual stresses are created usually undesirably during manufacturing processes, including casting, welding, metal forming, etc. Residual stresses alone or in combination with other factors can cause the destruction and fracture of components or significant decline in their service life. Therefore, it is crucial to measure the residual stresses. Contour method is a destructive testing method c...
متن کامل